CS5785 Practice Prelim Solutions
 Yichun Hu

Q1 Short Answer

Question	Answer
A	TRUE
B	FALSE (should be $\operatorname{Var}[\mathrm{X}]+4 \operatorname{Var}[\mathrm{Y}]$)
C	TRUE
D	Lots of submissions led to overfitting to the public set
E	Problematic: model could be overfitting to noise, need to validate
F	Problematic: could have very poor precision (i.e. low accuracy on positive examples)
G	Problematic: did parameter selection on full data not just train, so going to be biased

Q2 Training and Validation

Model complexity

Q3 Regularized Regression(alb)
(a) Larger lambda $=$ simpler model.
(b) 0.3. From Lecture note 6,

The AML approach (AKA "one-3fd-err" rale of thumb)

$$
\operatorname{Std} \operatorname{Err}\left(\hat{R}^{c r}(\lambda)\right)=\frac{1}{\underline{K}} \sqrt{\Sigma_{j}\left(\hat{R}^{c r}(\lambda)-c^{c} c_{j}(\lambda)\right)^{2}}
$$

Pick the "simplest" also w/ $\hat{R}^{c r}$ within one ster of the mining one

Q3 Regularized Regression(c/d/e)

(c) 0 .
(d) less.
(e) 0.5 underfit, 0 overfit.

Q4 ROC Curves and Score Distributions - (a)

Q4 ROC Curves and Score Distributions - (b)

A) Misclassification rate ~ 0.02
B) Misclassification rate ~ 0.40
C) Misclassification rate 0.25

Q4 ROC Curves and Score Distributions - (c/d)

C: optimize for lowest false positive rate (don't want break ins to vault)

D: optimize for highest recall $=T P R$ (don't want any infected food to pass)

Q5 Bayes Law - (a)

	Predicted Rotten	Predicted Good
Is Rotten		
Is Good		
Total		

"One in one thousand bananas is infested"

Q5 Bayes Law - (a)

	Predicted Rotten	Predicted Good	Total
Is Rotten	990	10	1,000
Is Good			999,000
Total			$1,000,000$

"99\% of rotten bananas are
detected as rotten"

Q5 Bayes Law - (a)

	Predicted Rotten	Predicted Good	Total
Is Rotten	990	10	1,000
Is Good	49,950	949,050	999,000
Total			$1,000,000$

" 95% of good bananas are detected as good"

Q5 Bayes Law - (a)

	Predicted Rotten	Predicted Good	Total
Is Rotten	990	10	1,000
Is Good	49,950	949,050	999,000
Total	50,940	949,060	$1,000,000$

check totals

Q5 Bayes Law - (b)

$P(\operatorname{bad} \mid$ marked bad $)=\frac{P(\text { marked bad } \mid \mathrm{bad}) P(\mathrm{bad})}{P(\text { marked bad })}$

Q5 Bayes Law - (b)

$$
\begin{aligned}
P(\mathrm{bad} \mid \operatorname{marked} \mathrm{bad}) & =\frac{P(\text { marked bad } \mid \mathrm{bad}) P(\mathrm{bad})}{P(\operatorname{marked} \mathrm{bad})} \\
& =\frac{0.99 * 0.001}{0.99 * 0.001+0.05 * 0.999} \\
& \approx 0.019
\end{aligned}
$$

Q5 Bayes Law - (c)

$\mathbb{E}[$ Profit $]=\mathbb{E}[$ Profit \mid Bad $] P($ Bad $)+\mathbb{E}[$ Profit \mid Good $] P($ Good $)$

Q5 Bayes Law - (c)

$$
\begin{aligned}
\mathbb{E}[\text { Profit }] & =\mathbb{E}[\text { Profit } \mid \text { Bad }] P(\text { Bad })+\mathbb{E}[\text { Profit } \mid \text { Good }] P(\text { Good }) \\
& =-499 * 0.001+1 * 0.999 \\
& =0.5
\end{aligned}
$$

Q5 Bayes Law - (d)

$\mathbb{E}[$ Profit $]=P($ Bad, Predicted Good $) \mathbb{E}[$ Profit \mid Bad, Predicted Good $]$ $+P($ Good, Predicted Good $) \mathbb{E}[$ Profit \mid Good, Predicted Good] $+P($ Predicted Bad $) \mathbb{E}[$ Profit \mid Predicted Bad]

Q5 Bayes Law - (d)

$\mathbb{E}[$ Profit $]=P($ Bad, Predicted Good $) \mathbb{E}[$ Profit \mid Bad, Predicted Good $]$ $+P($ Good, Predicted Good) $\mathbb{E}[$ Profit \mid Good, Predicted Good] $+P($ Predicted Bad $) \mathbb{E}[$ Profit | Predicted Bad]

$$
=\frac{10}{1,000,000} *-499.2+\frac{949,050}{1,000,000} * 0.8+\frac{50,940}{1,000,000} *-0.2
$$

≈ 0.744

Q6 Naive Bayes with Bag of Words - (a)

	win	score	learning	deep	loss
Sports 1	1	1	0	0	0
Sports 2	0	0	1	1	1
Sports 3	1	1	0	0	1
ML 1	0	1	1	1	1
ML 3	1	0	1	0	0
0	0		1		1

Q6 Naive Bayes with Bag of Words - (b)

P(Feature | Class)

	win	score	learning	deep	loss
Sports	2/3	2/3	1/3	1/3	2/3
ML	1/3	1/3	2/3	2/3	1/3
	win	score	learning	deep	loss
Tweet	1	0	1	1	1
$P(\mathrm{class} \mid x) \propto P(x \mid \mathrm{class}) P(\mathrm{class})$					

Q6 Naive Bayes with Bag of Words - (b)

P(Feature | Class)

	win	score	learning	deep	loss
Sports	2/3	2/3	1/3	1/3	2/3
ML	1/3	1/3	2/3	2/3	1/3
	win	score	learning	deep	loss
Tweet	1	0	1	1	1
$P(\text { class } \mid x) \propto P(x \mid \text { class }) P(\text { class })$					
$\begin{gathered} P\left(\operatorname{class}_{\text {sport }} \mid x\right) \propto 2 / 3 *(1-2 / 3) * 1 / 3 * 1 / 3 * 2 / 3 * 1 / 2=4 / 486 \\ P\left(\operatorname{class}_{\mathrm{ML}} \mid x\right) \propto 1 / 3 *(1-1 / 3) * 2 / 3 * 2 / 3 * 1 / 3 * 1 / 2=8 / 486 \end{gathered}$					

Q6 Naive Bayes with Bag of Words - (b)

P(Feature | Class)

	win	score	learning	deep	loss
Sports	2/3	2/3	1/3	1/3	2/3
ML	1/3	1/3	2/3	2/3	1/3
	win	score	learning	deep	loss
Tweet	1	0	1	1	1
$P(\mathrm{class} \mid x) \propto P(x \mid \mathrm{class}) P(\mathrm{class})$					
$P\left(\operatorname{class}_{\text {sport }} \mid x\right)=1 / 3$					
$P\left(\operatorname{class}_{\mathrm{ML}} \mid x\right)=2 / 3$					

Q6 Naive Bayes with Bag of Words - (c)

$$
X=U D V^{T}=\sum_{k} d_{k} u_{k} v_{k}^{T}
$$

In above sum each \mathbf{u} is an n-dimensional vector, each \mathbf{v} is a p dimensional vector

Approximate sum by just keeping first 300 entries in sum (those with highest \mathbf{d} values)

The first $300 \mathbf{u}$ vectors give the n 300 -dimensional document vectors, and the first $300 \mathbf{v}$ vectors give the p 300-dimensional word vectors

This is mathematically equivalent to taking the first 300 columns of \mathbf{U}, and the first 300 columns of \mathbf{V}

Q6 Naive Bayes with Bag of Words - (d)

$$
X \approx U[:,: 300] D[: 300,: 300] V[:,: 300]^{T}
$$

Approximate by taking just the first 300 columns of \mathbf{U} and \mathbf{V}, and the first 300 entries in D

Q6 Naive Bayes with Bag of Words - (e)

$$
\begin{aligned}
\text { Loss } & =\left\|X-X^{\text {reconstructed }}\right\|_{F} \\
& =\sum_{i, j}\left(X_{i j}-X_{i j}^{\text {reconstructed }}\right)^{2}
\end{aligned}
$$

What We've Learned So Far...

- Bayes rate - best possible risk
- Confusion matrix, accuracy, precision, recall, ROC curve measure the performance of our classifier
- Linear regression - OLS
- Logistic regression - log odds, maximum likelihood
- Subset selection, cross validation - choose parameters/ algorithms
- Shrinkage - ridge, lasso
- Naive Bayes - independent given Y, bag of words
- Kernel density estimation
- SVD, PCA
- K-means
- Gaussian mixture model, EM algorithm
- Similarity, multidimensional scaling

