# CS5785 Practice Prelim Solutions

Yichun Hu

### Q1 Short Answer

| Question | Answer                                                                                  |
|----------|-----------------------------------------------------------------------------------------|
| Α        | TRUE                                                                                    |
| В        | FALSE (should be Var[X] + 4Var[Y])                                                      |
| С        | TRUE                                                                                    |
| D        | Lots of submissions led to overfitting to the public set                                |
| Е        | Problematic: model could be overfitting to noise, need to validate                      |
| F        | Problematic: could have very poor precision (i.e. low accuracy on positive examples)    |
| G        | Problematic: did parameter selection on full data not just train, so going to be biased |

### **Q2 Training and Validation**



**Model complexity** 

### Q3 Regularized Regression-(a/b)

(a) Larger lambda = simpler model.

(b) 0.3. From Lecture note 6,

The AML approach (AKA "one-std-err"  
rule of frunt)  
Std Err 
$$(\hat{\mathcal{R}}^{cr}(A)) = \frac{1}{R} \sqrt{\mathcal{E}_j(\hat{\mathcal{R}}^{cr}(A) - Cr^{cr}(A))^2}$$

### Q3 Regularized Regression-(c/d/e)

(c) 0.

(d) less.

(e) 0.5 underfit, 0 overfit.

### Q4 ROC Curves and Score Distributions - (a)





### Q4 ROC Curves and Score Distributions - (b)



- A) Misclassification rate ~ 0.02
- B) Misclassification rate ~ 0.40
- C) Misclassification rate ~ 0.25

### Q4 ROC Curves and Score Distributions - (c/d)

C: optimize for lowest *false positive rate* (don't want break ins to vault)

D: optimize for highest *recall* = *TPR* (don't want any infected food to pass)

|           | Predicted<br>Rotten | Predicted<br>Good | Total     |
|-----------|---------------------|-------------------|-----------|
| Is Rotten |                     |                   | 1,000     |
| Is Good   |                     |                   | 999,000   |
| Total     |                     |                   | 1,000,000 |

# "One in one thousand bananas is infested"

|           | Predicted<br>Rotten | Predicted<br>Good | Total     |
|-----------|---------------------|-------------------|-----------|
| Is Rotten | 990                 | 10                | 1,000     |
| Is Good   |                     |                   | 999,000   |
| Total     |                     |                   | 1,000,000 |

# "99% of rotten bananas are detected as rotten"

|           | Predicted<br>Rotten | Predicted<br>Good | Total     |
|-----------|---------------------|-------------------|-----------|
| Is Rotten | 990                 | 10                | 1,000     |
| Is Good   | 49,950              | 949,050           | 999,000   |
| Total     |                     |                   | 1,000,000 |

"95% of good bananas are detected as good"

|           | Predicted<br>Rotten | Predicted<br>Good | Total     |
|-----------|---------------------|-------------------|-----------|
| Is Rotten | 990                 | 10                | 1,000     |
| Is Good   | 49,950              | 949,050           | 999,000   |
| Total     | 50,940              | 949,060           | 1,000,000 |

#### check totals

 $P(\text{bad} \mid \text{marked bad}) = \frac{P(\text{marked bad} \mid \text{bad})P(\text{bad})}{P(\text{marked bad})}$ 

 $P(\text{bad} \mid \text{marked bad}) = \frac{P(\text{marked bad} \mid \text{bad})P(\text{bad})}{P(\text{marked bad})}$  $= \frac{0.99 * 0.001}{0.99 * 0.001 + 0.05 * 0.999}$ 

 $\approx 0.019$ 

 $\mathbb{E}[\text{Profit}] = \mathbb{E}[\text{Profit} \mid \text{Bad}]P(\text{Bad}) + \mathbb{E}[\text{Profit} \mid \text{Good}]P(\text{Good})$ 

 $\mathbb{E}[\text{Profit}] = \mathbb{E}[\text{Profit} \mid \text{Bad}]P(\text{Bad}) + \mathbb{E}[\text{Profit} \mid \text{Good}]P(\text{Good})$ 

= -499 \* 0.001 + 1 \* 0.999

= 0.5

 $\mathbb{E}[\operatorname{Profit}] = P(\operatorname{Bad}, \operatorname{Predicted} \operatorname{Good})\mathbb{E}[\operatorname{Profit} \mid \operatorname{Bad}, \operatorname{Predicted} \operatorname{Good}]$  $+P(\operatorname{Good}, \operatorname{Predicted} \operatorname{Good})\mathbb{E}[\operatorname{Profit} \mid \operatorname{Good}, \operatorname{Predicted} \operatorname{Good}]$  $+P(\operatorname{Predicted} \operatorname{Bad})\mathbb{E}[\operatorname{Profit} \mid \operatorname{Predicted} \operatorname{Bad}]$ 

$$\begin{split} \mathbb{E}[\operatorname{Profit}] &= P(\operatorname{Bad}, \operatorname{Predicted} \operatorname{Good}) \mathbb{E}[\operatorname{Profit} \mid \operatorname{Bad}, \operatorname{Predicted} \operatorname{Good}] \\ &+ P(\operatorname{Good}, \operatorname{Predicted} \operatorname{Good}) \mathbb{E}[\operatorname{Profit} \mid \operatorname{Good}, \operatorname{Predicted} \operatorname{Good}] \\ &+ P(\operatorname{Predicted} \operatorname{Bad}) \mathbb{E}[\operatorname{Profit} \mid \operatorname{Predicted} \operatorname{Bad}] \end{split}$$

$$= \frac{10}{1,000,000} * -499.2 + \frac{949,050}{1,000,000} * 0.8 + \frac{50,940}{1,000,000} * -0.2$$
$$\approx 0.744$$

#### Q6 Naive Bayes with Bag of Words - (a)

|          | win | score | learning | deep | loss |
|----------|-----|-------|----------|------|------|
| Sports 1 | 1   | 1     | 0        | 0    | 0    |
| Sports 2 | 0   | 0     | 1        | 1    | 1    |
| Sports 3 | 1   | 1     | 0        | 0    | 1    |
| ML 1     | 0   | 1     | 1        | 1    | 1    |
| ML 2     | 1   | 0     | 0        | 1    | 0    |
| ML 3     | 0   | 0     | 1        | 0    | 0    |

### Q6 Naive Bayes with Bag of Words - (b)

#### P(Feature | Class)

|        | win | score | learning | deep | loss |
|--------|-----|-------|----------|------|------|
| Sports | 2/3 | 2/3   | 1/3      | 1/3  | 2/3  |
| ML     | 1/3 | 1/3   | 2/3      | 2/3  | 1/3  |
|        |     |       |          |      |      |

|       | win             | score | learning | deep | loss |
|-------|-----------------|-------|----------|------|------|
| Tweet | 1               | 0     | 1        | 1    | 1    |
|       | $\mathbf{D}(1)$ |       |          | (1)  |      |

 $P(\text{class}|x) \propto P(x|\text{class})P(\text{class})$ 

### Q6 Naive Bayes with Bag of Words - (b)

#### P(Feature | Class)

|                                                              | win | score | learning | deep | loss |
|--------------------------------------------------------------|-----|-------|----------|------|------|
| Sports                                                       | 2/3 | 2/3   | 1/3      | 1/3  | 2/3  |
| ML                                                           | 1/3 | 1/3   | 2/3      | 2/3  | 1/3  |
|                                                              |     |       |          |      |      |
|                                                              | win | score | learning | deep | loss |
| Tweet                                                        | 1   | 0     | 1        | 1    | 1    |
| $P(\text{class} x) \propto P(x \text{class})P(\text{class})$ |     |       |          |      |      |

 $P(\text{class}_{\text{sport}}|x) \propto 2/3 * (1 - 2/3) * 1/3 * 1/3 * 2/3 * 1/2 = 4/486$  $P(\text{class}_{\text{ML}}|x) \propto 1/3 * (1 - 1/3) * 2/3 * 2/3 * 1/3 * 1/2 = 8/486$ 

### Q6 Naive Bayes with Bag of Words - (b)

#### P(Feature | Class)

|        | win | score | learning | deep | loss |
|--------|-----|-------|----------|------|------|
| Sports | 2/3 | 2/3   | 1/3      | 1/3  | 2/3  |
| ML     | 1/3 | 1/3   | 2/3      | 2/3  | 1/3  |

|       | win | score | learning | deep | loss |
|-------|-----|-------|----------|------|------|
| Tweet | 1   | 0     | 1        | 1    | 1    |

 $P(\text{class}|x) \propto P(x|\text{class})P(\text{class})$ 

 $P(\text{class}_{\text{sport}}|x) = 1/3$  $P(\text{class}_{\text{ML}}|x) = 2/3$ 

#### Q6 Naive Bayes with Bag of Words - (c)

$$X = UDV^T = \sum_k d_k u_k v_k^T$$

In above sum each **u** is an n-dimensional vector, each **v** is a pdimensional vector

Approximate sum by just keeping first 300 entries in sum (those with highest **d** values)

The first 300 **u** vectors give the n 300-dimensional document vectors, and the first 300 **v** vectors give the p 300-dimensional word vectors

This is mathematically equivalent to taking the first 300 columns of **U**, and the first 300 columns of **V** 

### Q6 Naive Bayes with Bag of Words - (d)

#### $X \approx U[:,:300]D[:300,:300]V[:,:300]^T$

Approximate by taking just the first 300 columns of **U** and **V**, and the first 300 entries in **D** 

#### Q6 Naive Bayes with Bag of Words - (e)

$$Loss = ||X - X^{\text{reconstructed}}||_F$$

$$= \sum_{i,j} (X_{ij} - X_{ij}^{\text{reconstructed}})^2$$

# What We've Learned So Far...

- Bayes rate best possible risk
- Confusion matrix, accuracy, precision, recall, ROC curve measure the performance of our classifier
- Linear regression OLS
- Logistic regression log odds, maximum likelihood
- Subset selection, cross validation choose parameters/ algorithms
- Shrinkage ridge, lasso
- Naive Bayes independent given Y, bag of words

- Kernel density estimation
- SVD, PCA
- K-means
- Gaussian mixture model, EM algorithm
- Similarity, multidimensional scaling