
CS5785 Homework 4

The homework is generally split into programming exercises and written exercises.
This homework is due on Novmeber 26, 2019 at 11:59 PM EST. Upload your homework to CMS.
Please upload the submission as a single .zip file. A complete submission should include:

1. A write-up as a single .pdf file, or as a single .ipynb file.

2. Source code for all of your experiments (AND figures) in .py files if you use Python or .ipynb
files if you use the IPython Notebook. If you use some other language, include all build scripts
necessary to build and run your project along with instructions on how to compile and run
your code.

The write-up should contain a general summary of what you did, how well your solution works, any
insights you found, etc. On the cover page, include the class name, homework number, and team
member names. You are responsible for submitting clear, organized answers to the questions. If
you submit the writeup portion as a .ipynb file it should still be a clean and organized report, as
with a .pdf submission, with only the minimal amount of code needed to generate figures etc. (note
that you can import functions defined in a separate .py file into a IPython notebook). You could
use online LATEX templates from Overleaf, under “Homework Assignment” and and “Project / Lab
Report”.
Please include all relevant information for a question, including text response, equations, figures,
graphs, output, etc. If you include graphs, be sure to include the source code that generated them.
Please pay attention to Slack for relevant information regarding updates, tips, and policy changes.
You are encouraged (but not required) to work in groups of 2.

PROGRAMMING EXERCISES

1. Multidimensional scaling for genetic population differences. In this exercise, we will look at a
dataset of 42 human geographic populations collected by Cavalli-Sforza et al. in The History and
Geography of Human Genes, 1994. There are many ways to measure genetic similarity between
populations. This work uses the modified Nei’s distance, which compares allele frequencies at
specific locations within the human genome. Other ways to measure genetic similarity include
the edit distance between DNA sequences or Euclidean distance of gene expressions.

This dataset contains comparisons between every pair of populations in the study as a distance
matrix. You can use the following code to interact with it:

import numpy as np
data = np.load("mds-population.npz")
print data[’D’] # Distance matrix
print data[’population_list’] # List of populations

https://cmsx.cs.cornell.edu/
https://www.overleaf.com/latex/templates/


CS5785 Fall 2019: Homework 4 Page 2

Here, Di , j is the dissimilarity between population i and j . Higher scores indicate more dissimilar-
ity.

Since this distance is not based on an underlying vector representation, we cannot directly use
traditional techniques like classification or clustering to analyze it. Our first step will be to embed
this distance matrix into an m-dimensional vector space.

(a) First, use multidimensional scaling (MDS) to coerce D into a 2-dimensional vector represen-
tation. You can use the functions in sklearn.manifold for this.

i. MDS will attempt to output a set of points x ∈ R42,m such that the Euclidean distance
between every pair of points approximates the Nei’s distance between these populations,
or ∥xi−xi∥2 ≈ Di , j . What assumptions are being made? Under what circumstances could
this fail? How could we measure how much information is being lost? Please explain.

ii. One way of increasing the quality of the output is by increasing the dimensionality of
the MDS result. How many dimensions are necessary to capture most of the variation
in the data? There are several ways of making this judgment: for instance, you might
sample some quality measure between x and D while varying m, or you might count the
nonzero singular values of D , or inspect the singular values of x at some high dimension
like m = 20. Briefly explain your method and justify why it makes sense.

iii. Use MDS to embed the distance matrix into only two dimensions and show the resulting
scatterplot. Label each point with the name of its population.

(b) k-means on 2D embedding. Select an appropriate k and run k-means on the scatterplot.
Show the resulting clusters.

Since we are working with only two dimensions, this clustering is likely to lose a lot of high-
dimensional structure. Do you agree with the resulting clustering? What information seems
to be lost?

(c) Comparing hierarchical clustering with K-Means. Use hierarchical clustering to cluster the
original distance matrix. We suggest using the functions in scipy.cluster.hierarchy for
this, as this library can plot the resulting graph structure. Show the resulting tree as a den-
drogram, labeling the x axis with the categorical population names and the y axis with the
Nei’s distance between clusters. (It’s also possible to do this with sklearn, but traversing the
resulting structure is much harder).

To turn the resulting tree into a flat clustering of points, cut off the dendrogram at a certain
distance by merging all subclusters within this distance together. This can be done with the
scipy.cluster.hierarchy.fcluster function. Select a distance cutoff that roughly corre-
sponds with your chosen k earlier, balancing the number of points in each cluster with the
number of resulting clusters. Visualize the resulting clustering by coloring the corresponding
points on your 2D MDS embedding. How does this clustering compare with the k-means
clustering you computed earlier?

(d) Compare k-medoids with k-means. Repeat the above experiment, but applying k-medoid
clustering on the original distance matrix. Show the resulting clusters on a 2D scatterplot.
Are there any significant differences between the clustering chosen by k-medoids compared
to k-means?

2. Random forests for image approximation In this question, you will use random forest regression
to approximate an image by learning a function, f : R2 → R , that takes image (x, y) coordinates

2



CS5785 Fall 2019: Homework 4 Page 3

as input and outputs pixel brightness. This way, the function learns to approximate areas of the
image that it has not seen before.

a. Start with an image of the Mona Lisa. If you don’t like the Mona Lisa, pick another interesting
image of your choice.

Figure 1: Left: http://tinyurl.com/mona-lisa-small Mona Lisa, Leonardo da Vinci, via Wikipedia.
Licensed under Public Domain. Middle: Example output of a decision tree regressor. The input is a
“feature vector” containing the (x, y) coordinates of the pixel. The output at each point is an (r, g ,b)
tuple. This tree has a depth of 7. Right: Example output of a k-NN regressor, where k = 1. The output at
each pixel is equal to its closest sample from the training set.

b. Preprocessing the input. To build your “training set,” uniformly sample 5,000 random (x, y)
coordinate locations. Note if you use an image other than the Mona Lisa image linked above
you may need to sample a different number of coordinates, so that you sample approximately
the same percentage of the total number of pixels in the image (around 1%).

• What other preprocessing steps are necessary for random forests inputs? Describe them,
implement them, and justify your decisions. In particular, do you need to perform mean
subtraction, standardization, or unit-normalization?

c. Preprocessing the output. Sample pixel values at each of the given coordinate locations.
Each pixel contains red, green, and blue intensity values, so decide how you want to handle
this. There are several options available to you:

• Convert the image to grayscale

• Regress all three values at once, so your function maps (x, y) coordinates to (r, g ,b) val-
ues: f : R2 →R3

• Learn a different function for each channel, fRed : R2 →R, and likewise for fGr een , fBlue .

Note that you may need to rescale the pixel intensities to lie between 0.0 and 1.0. (The de-
fault for pixel values may be between 0 and 255, but your image library may have different
defaults.)

What other preprocessing steps are necessary for random regression forest outputs? Describe
them, implement them, and justify your decisions.

3

http://tinyurl.com/mona-lisa-small


CS5785 Fall 2019: Homework 4 Page 4

d. To build the final image, for each pixel of the output, feed the pixel coordinate through the
random forest and color the resulting pixel with the output prediction. You can then use
imshow to view the result. (If you are using grayscale, try imshow(Y, cmap=’gray’) to avoid
fake-coloring). You may use any implementation of random forests, but you should under-
stand the implementation and you must cite your sources.

e. Experimentation.

i. Repeat the experiment for a random forest containing a single decision tree, but with
depths 1, 2, 3, 5, 10, and 15. How does depth impact the result? Describe in detail why.

ii. Repeat the experiment for a random forest of depth 7, but with number of trees equal to
1, 3, 5, 10, and 100. How does the number of trees impact the result? Describe in detail
why.

iii. As a simple baseline, repeat the experiment using a k-NN regressor, for k = 1. This means
that every pixel in the output will equal the nearest pixel from the “training set.” Compare
and contrast the outlook: why does this look the way it does?

iv. (Optional) Experiment with different pruning strategies of your choice.

f. Analysis.

i. What is the decision rule at each split point? Write down the 1-line formula for the split
point at the root node for one the trained decision trees inside the forest. Feel free to
define any variables you need.

ii. Why does the resulting image look like the way it does? What shape are the patches of
color, and how are they arranged?

iii. Straightforward: How many patches of color may be in the resulting image if the forest
contains a single decision tree? Define any variables you need and provide an upper
bound.

iv. Tricky: How many patches of color might be in the resulting image if the forest contains
n decision trees? Define any variables you need and provide an upper bound.

3. SVM Classification This problem involves the OJ data set which is available at
https://gist.github.com/gcr/e86ca41c43accbaed32226cc63af14e7
(click the “Raw” button to download).

a. Create a training set containing a random sample of 800 observations, and a test set contain-
ing the remaining observations. Report the class fractions in your training and test sets.

b. Fit a support vector classifier to the training data using C = 0.01, with Purchase as the re-
sponse and the other variables as predictors. Describe the classifier. What are the learned
coefficients? (You can use sklearn to help with this.)

c. What are the training and test error rates?

d. Use cross validation to select an optimal cost (C) and report a CV error plot. Consider values
in the range 0.01 to 10. What C is the best using the one-stderr rule?

e. Compute the training and test error rates using this new value for cost.

f. For a support vector classifier with a radial bassis function (RBF) kernel k(x, x ′) = e−γ∥x−x ′∥2
,

why should we consider a smaller γ value as corresponding to a simpler model?

(Note that sometimes we write the RBF kernel as k(x, x ′) = e−∥x−x ′∥2/σ2
using σ= 1/

p
γ.)

4

https://gist.github.com/gcr/e86ca41c43accbaed32226cc63af14e7


CS5785 Fall 2019: Homework 4 Page 5

g. Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use cross-
validation (with the one-standard-error rule) to select an appropriate gamma .

h. Repeat parts (b) through (e) using a support vector machine with a polynomial kernel. Set
degree=2 and use cross validation again to choose an appropriate gamma.

i. Overall, which approach seems to give the best results on this data?

4. Approximating images with neural networks. In this question, you will implement your own
neural network toolkit. You will be writing your own implementation from scratch, using C++ and
CUDA. You should calculate the derivatives of each layer by hand using pencil and paper. Please
attach a scan of your paper notes to the homework.

Just kidding. We’re not that mean. There are several good convolutional neural network packages
that have done the heavy lifting for us. One of the more interesting (and well-written!) demos is
called CONVNETJS. It is implemented in Javascript and runs in a modern web browser without any
dependencies.

Take a look at convnet.js’s “Image Painting” demo at: http://cs.stanford.edu/people/karpathy/
convnetjs/demo/image_regression.html

a. Describe the structure of the network. How many layers does this network have? What are
the sizes of the layers? What activation function(s) are being used?

b. What does “Loss” mean here? What is the actual loss function? You may need to consult the
source code (https://cs.stanford.edu/people/karpathy/convnetjs/docs.html).

c. Plot the loss over time, after letting it run for 5,000 iterations. You can do this by watching the
training and manually writing down the loss every 500 or so iterations. How good does the
network eventually get?

d. Can you make the network converge to a lower loss function by lowering the learning rate
every 1,000 iterations? Some learning rate schedules, for example, halve the learning rate
every n iterations: does this technique let the network converge to a lower training loss?

e. Lesion study. The text box contains a small snippet of Javascript code that initializes the net-
work. You can change the network structure by clicking the “Reload network” button, which
simply evaluates the code. Let’s perform some brain surgery: Try commenting out each layer,
one by one. Report some results: How many layers can you drop before the accuracy drops
below a useful value? How few hidden units can you get away with before quality drops no-
ticeably?

f. Try adding a few layers by copy+pasting lines in the network definition. Can you noticeably
increase the accuracy of the network?

5

http://cs.stanford.edu/people/karpathy/convnetjs/demo/image_regression.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/image_regression.html
https://cs.stanford.edu/people/karpathy/convnetjs/docs.html


CS5785 Fall 2019: Homework 4 Page 6

WRITTEN EXERCISES

1. Decision trees. Suppose we modify the tree-growing algorithm presented in class to use a new
impurity function. Define f (r ) = min{r,1−r }. Then we will define the impurity of a set of examples
as:

I ({y1, . . . , yn}) = f (p) (1)

where p is the fraction of positive examples in {y1, . . . , yn}. Let us call this the min-error impurity
function.

As usual, for a split where p1 positive and n1 negative examples reach the left branch and p2 posi-
tive and n1 negative examples reach the right branch, the weighted impurity of the split will be

(p1 +n1) · f

(
p1

p1 +n1

)
+ (p2 +n2) · f

(
p2

p2 +n2

)
. (2)

(a) Suppose that each branch of this split is replaced by a leaf labeled with the more frequent
class among the examples that reach that branch. Show that the number of training mistakes
made by this truncated tree is exactly equal to the weighted impurity given above. Thus, using
the min-error impurity is equivalent to growing the tree greedily to minimize training error.

(b) Suppose the dataset looks like the following. There are three {0,1}-valued attributes, and one
{−,+}-valued class label y .

a1 a2 a3 y
0 0 0 +
1 1 0 +
0 1 0 +
1 0 1 -
0 0 1 -
0 1 0 -
1 1 0 -
1 1 1 -
1 0 0 -
1 1 0 -

Which split will be chosen at the root when the Gini index impurity function is used? Which
split will be chosen at the root when min-error impurity is used? Explain your answers.

(c) Under what general conditions on p1, n1, p2, and n2 will the weighted min-error impurity of
the split be strictly smaller than the min-error impurity before making the split (i.e., of all the
examples taken together)?

(d) What do your answers to the last two parts suggest about the suitability of min-error impurity
for growing decision trees?

2. Bootstrap aggregation (“bagging”) Suppose we have a training set of N examples, and we use
bagging to create a bootstrap replicate by drawing N samples with replacement to form a new
training set. Because each sample is drawn with replacement, some examples may be included in
this bootstrap replicate multiple times, and some examples will be omitted from it entirely.

As a function of N , compute the expected fraction of the training set that does not appear at all in
the bootstrap replicate. What is the limit of this expectation as N →∞?

6



CS5785 Fall 2019: Homework 4 Page 7

Hint 1: You can express the number of examples not chosen by bootstrapping as the sum of n
random variables Xi , where each of these variables equals 1 if the i ’th sample was never chosen,
or 0 otherwise.

Hint 2: Recall that expectation is linear.

Hint 3: You may want to use the fact that lim
n→∞(1+x/n)n = ex .

3. Maximum-margin classifiers Suppose we are given n = 7 observa-
tions in p = 2 dimensions. For each observation, there is an associ-
ated class label.

a. Sketch the observations and the maximum-margin separating
hyperplane.

b. Describe the classification rule for the maximal margin classi-
fier. It should be something along the lines of “Classify as Red
if β0 +β1X1 +β2X2 > 0, or classify as Blue otherwise.” Provide
the values for β0, β1, and β2.

X1 X2 Y
3 4 Red
2 2 Red
4 4 Red
1 4 Red
2 1 Blue
4 3 Blue
4 1 Blue

c. On your sketch, indicate the margin for the maximal margin hyperplane.

d. Indicate the support vectors for the maximal margin classifier.

e. Argue that a slight movement of the seventh observation would not affect the maximal mar-
gin hyperplane.

f. Sketch a hyperplane that separates the data, but is not the maximum-margin separating hy-
perplane. Provide the equation for this hyperplane.

g. Draw an additional observation on the plot so that the two classes are no longer separable by
a hyperplane.

7


